Supramolecular structure of the thylakoid membrane of Prochlorothrix hollandica: a chlorophyll b-containing prokaryote.
نویسندگان
چکیده
Prochlorothrix hollandica is a newly described photosynthetic prokaryote, which contains chlorophylls a and b. In this paper we report the results of freeze fracture and freeze etch studies of the organization of the photosynthetic thylakoid membranes of Prochlorothrix. These membranes exhibit four distinct fracture faces in freeze fractured preparations, two of which are derived from membrane splitting in stacked regions of the thylakoid membrane, and two of which are derived from nonstacked regions. The existence of these four faces confirms that the thylakoid membranes of Prochlorothrix, like those of green plants, display true membrane stacking and have different internal composition in stacked and non-stacked regions, a phenomenon that has been given the name lateral heterogeneity. The general details of these fracture faces are similar to those of green plants, although the intramembrane particles of Prochlorothrix are generally smaller than those of green plants by as much as 30%. Freeze etched membrane surfaces have also been studied, and the results of these studies confirm freeze fracture observations. The outer surface of the thylakoid membrane displays both small (less than 8.0 nm) and large (greater than 10.0 nm) particles. The inner surface of the thylakoid membrane is covered with tetrameric particles, which are concentrated into stacked membrane regions, a situation that is similar to the inner surfaces of the thylakoid membranes of green plants. These tetramers have never before been reported in a prokaryote. The photosynthetic membranes of Prochlorothrix therefore represent a prokaryotic system that is remarkably similar, in structural terms, to the photosynthetic membranes found in chloroplasts of green plants.
منابع مشابه
Draft genome of Prochlorothrix hollandica CCAP 1490/1T (CALU1027), the chlorophyll a/b-containing filamentous cyanobacterium
Prochlorothrix hollandica is filamentous non-heterocystous cyanobacterium which possesses the chlorophyll a/b light-harvesting complexes. Despite the growing interest in unusual green-pigmented cyanobacteria (prochlorophytes) to date only a few sequenced genome from prochlorophytes genera have been reported. This study sequenced the genome of Prochlorothrix hollandica CCAP 1490/1T (CALU1027). T...
متن کاملNMR solution structure of plastocyanin from the photosynthetic prokaryote, Prochlorothrix hollandica.
The solution structure of a divergent plastocyanin (PC) from the photosynthetic prokaryote Prochlorothrix hollandica was determined by homonuclear 1H NMR spectroscopy. Nineteen structures were calculated from 1222 distance restraints, yielding a family of structures having an average rmsd of 0.42 +/- 0.08 A for backbone atoms and 0.71 +/- 0.07 A for heavy atoms to the mean structure. No distanc...
متن کاملFunctional Analysis of the Photosynthetic Apparatus of Prochlorothrix hollandica (Prochlorales), a Chlorophyll b Containing Procaryote.
Light-shade adaptation of the chlorophyll a/b containing procaryote Prochlorothrix hollandica was studied in semicontinuous cultures adapted to 8, 80 and 200 mumole quanta per square meter per second. Chlorophyll a contents based on dry weight differed by a factor of 6 and chlorophyll b by a factor of 2.5 between the two extreme light conditions. Light utilization efficiencies determined from p...
متن کاملCyanobacteria of the Genus Prochlorothrix†
Green cyanobacteria differ from the blue-green cyanobacteria by the possession of a chlorophyll-containing light-harvesting antenna. Three genera of the green cyanobacteria namely Acaryochloris, Prochlorococcus, and Prochloron are unicellular and inhabit marine environments. Prochlorococcus marinus attracts most attention due to its prominent role in marine primary productivity. The fourth genu...
متن کاملComputational simulation of the docking of Prochlorothrix hollandica plastocyanin to potosystem I: modeling the electron transfer complex.
We have used several docking algorithms (GRAMM, FTDOCK, DOT, AUTODOCK) to examine protein-protein interactions between plastocyanin (Pc)/photosystem I (PSI) in the electron transfer reaction. Because of the large size and complexity of this system, it is faster and easier to use computer simulations than conduct x-ray crystallography or nuclear magnetic resonance experiments. The main criterion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 91 ( Pt 4) شماره
صفحات -
تاریخ انتشار 1988